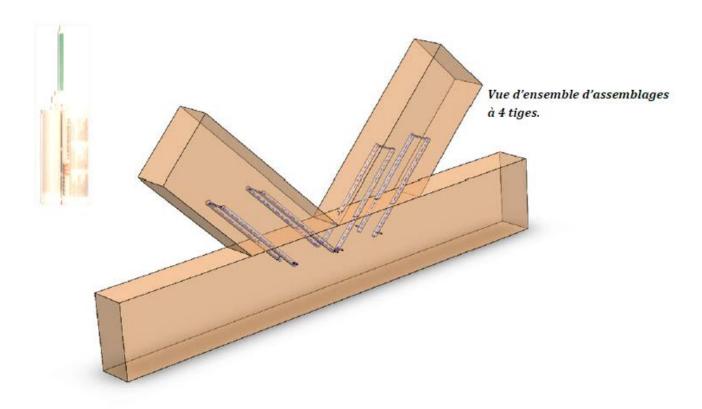
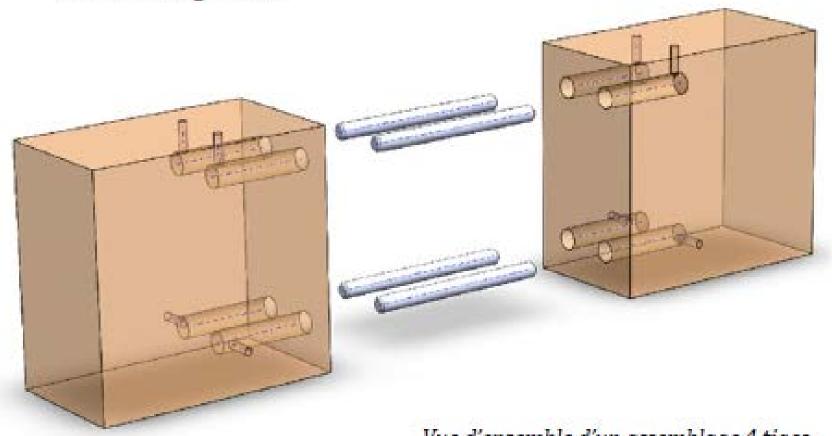
Construction en bois Bachelor

Les tiges filetée encollées


EPFL - ICOM – institut de construction métallique

1

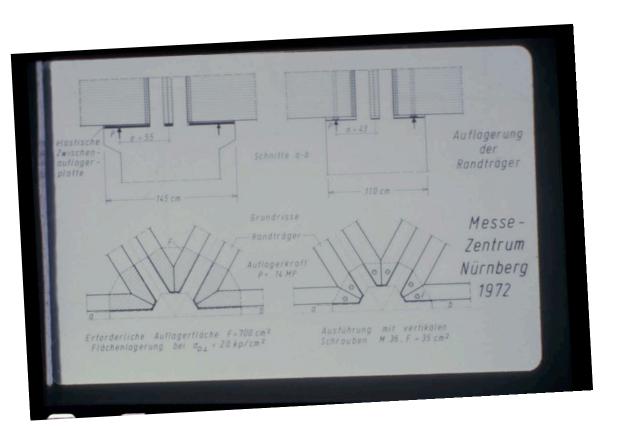
Le principe


- 1 tige en acier
- de la colle époxy
- Bois

Le principe

Le principe

Assemblage bois



Vue d'ensemble d'un assemblage 4 tiges.

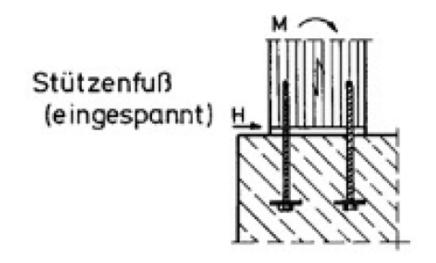
Exemple d'application

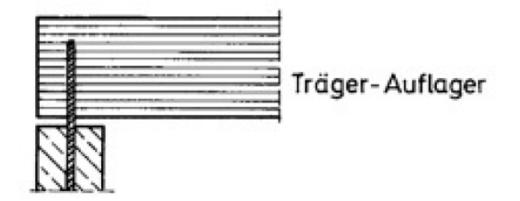
Exemple d'application

Application

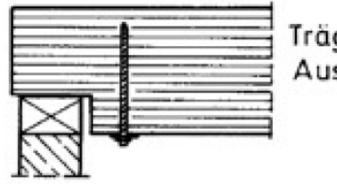
Reprise de la solive moulurée

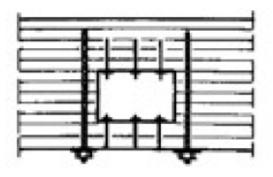
Application

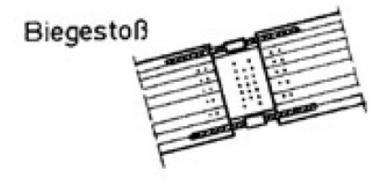

Joint d'arbalêtrier+ broches acier b500b Ø 20mm + injection de MASTIFIX




Application







Träger-Ausklinkung Träger-Durchbruch

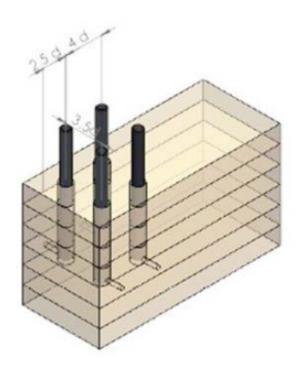
Fabricant

Ferwood - entreprise JPF-Ducret

RBF – entreprise Simonin

Mastifix - Renoantic

TiComTec



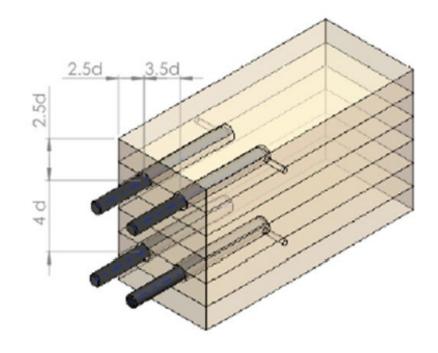
Renoantic

Distances pour tiges perpendiculaire

La distance des percements depuis les cotés sont de 2.5 x le diamètres des tiges de scellements.

La distance entre les percements doivent être de 3.5 x d ou de 4 x d, selon le sens des mesures.

d = diamètre de la tige de scellement en mm


Renoantic

Distance pour tiges longitudinales

Lors d'assemble de plus de deux tiges, prendre un coefficient de réduction de 0.8

La distance entre les percements est de $4 \times d$ dans la hauteur et de $3.5 \times d$ dans la largeur.

Même règle que le schéma de dessus ; 2.5 x d depuis tous les cotés.

d = diamètre de la tige de scellement en mm

Mise en place

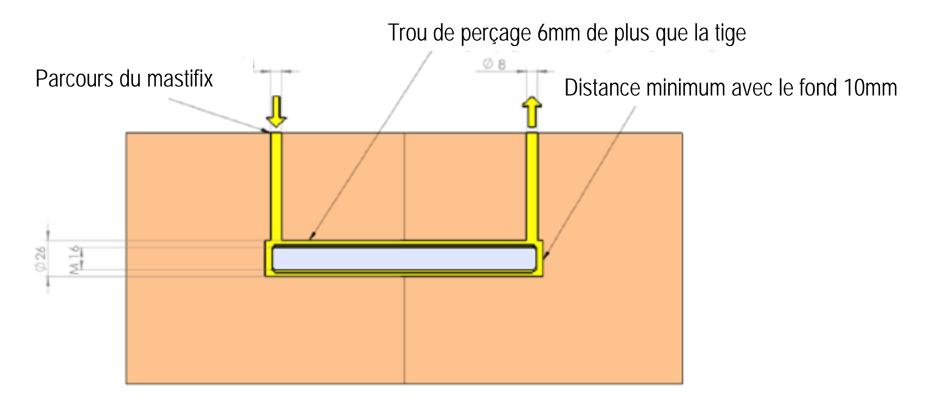


Schéma d'injection pour simple tige

Dimensionnement

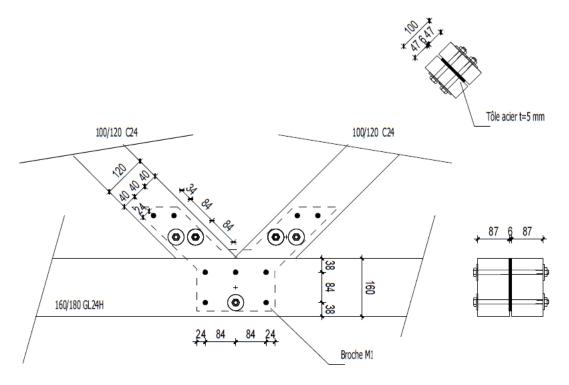
Diamètre des tiges

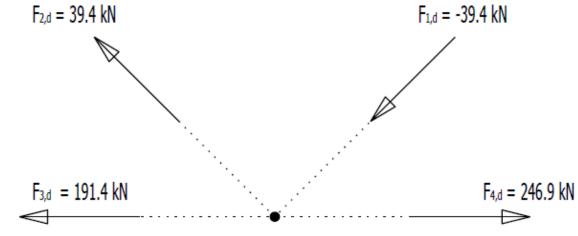
LONG	12	14	16	18	20	22	26	30
150	44.1	48.3	52.3	54.4				
200	51.3	56.6	61.8	69.1	76.8	81		
250	56.1	63.6	69.5	78	86.8	95.3	103.1	
300	и	69.7	76.3	85.8	95.5	105.1	117.6	132.4
350		72.4	82.4	92.7	103.3	113.9	127.8	143.7
400			88.1	99.2	110.5	121.9	136.0	154.2
500			90.5	110.2	123.3	136.3	153.4	113.0
600			"	114.3	134.7	148.8	167.9	189.6
700					141.0	160.2	178.0	204.4
800						"		"

Dimensionnement

Majoration pour charge perpendiculaire

- 1. Pour tige perpendiculaire aux fibres, on peut majorer ces valeurs de 20 %
- 2. Pour les angles entre 0 et 90° (obliques), il faut utiliser ces valeurs


Effet de groupe


- 3. Ces valeurs sont valables pour 1 tige
- 4. Pour un groupe de 2 tiges, réduire la valeur par un coefficient de 0.9
- 5. Pour un groupe de 3 tiges et plus, réduire par un coefficient de 0.8

Valeurs caractéristique

- 7. Pour obtenir les valeurs de dimensionnement, diviser par 1.7 selon art. 2.2.5 SIA 265 pour assemblages bois massif et BLC
- 8. Le choix et la vérification de la tige selon la qualité d'acier est de la responsabilité de l'utilisateur

Exercice

Résistance à la traction

(5) Der Bemessungswert des Ausziehwiderstandes von eingeklebten Stahlstäben darf berechnet werden zu:

$$R_{\mathsf{ax},\mathsf{d}} = \min \left\{ f_{\mathsf{y},\mathsf{d}} \cdot A_{\mathsf{ef}}; \, \pi \cdot d \cdot \ell_{\mathsf{ad}} \cdot f_{\mathsf{k1},\mathsf{d}} \right\} \tag{276}$$

Dabei ist

 $f_{y,d}$ Bemessungswert der Streckgrenze des Stahlstabes,

 $A_{\sf ef}$ Spannungsquerschnitt des Stahlstabes,

 $\ell_{\rm ad}$ Einkleblänge des Stahlstabes,

 $f_{k1,d}$ Bemessungswert der Klebfugenfestigkeit mit $f_{k1,k}$ nach Tabelle F.23.

Longueur minimale d'encollage

(6) Die Einklebelänge $\ell_{\rm ad,min}$ in mm muss mindestens betragen:

$$\ell_{ad,min} = max \{0,5 \cdot d^2; 10 \cdot d\}$$

Dabei ist

d Nenndurchmesser des Stahlstabes in mm.

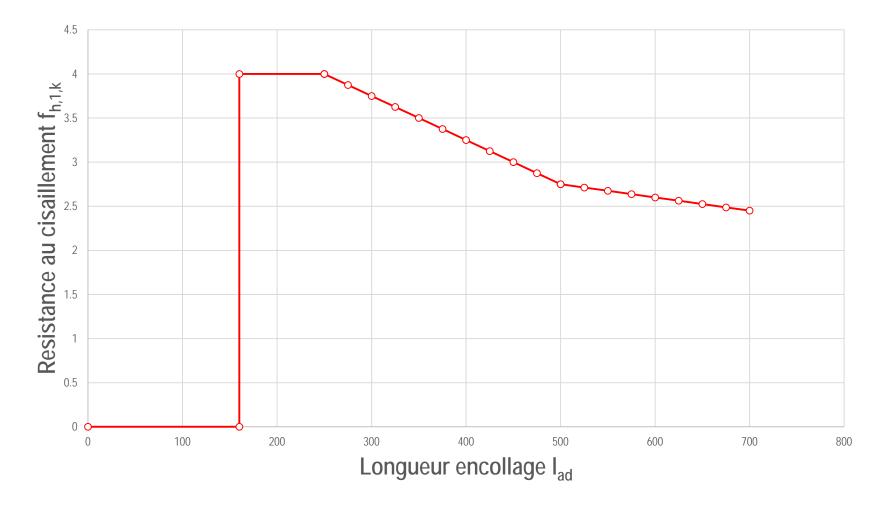
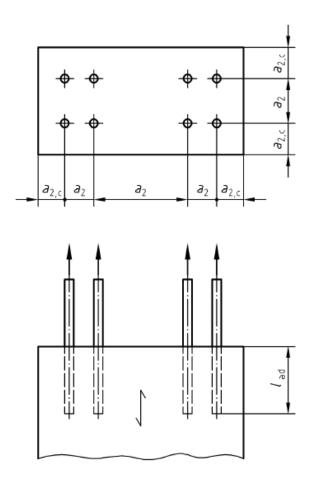

Valeur de f_{h,1,k}

Tabelle F.23 — Rechenwerte für charakteristische Festigkeitskennwerte in N/mm² für Klebefugen bei Verstärkungen^a

	1	2	3			
			Wirksame Einkleblänge ℓ_{ad} des Stahlstabes			
1			≤ 250 mm	250 mm < ℓ _{ad} ≤ 500 mm	500 mm < ℓ _{ad} ≤ 1 000 mm	
2	$f_{k1,k}$	Klebefuge zwischen Stahl- stab und Bohrlochwandung	4,0	$5,25 - 0,005 \cdot \ell_{ad}$	$3,5 - 0,0015 \cdot \ell_{ad}$	
3	$f_{k2,k}$	Klebefuge zwischen Träger- oberfläche und Verstärkungs- platte		0,75		
4	$f_{k3,k}$	Klebefuge zwischen Träger- oberfläche und Verstärkungs- platte bei gleichmäßiger Ein- leitung der Schubspannung	1 70			

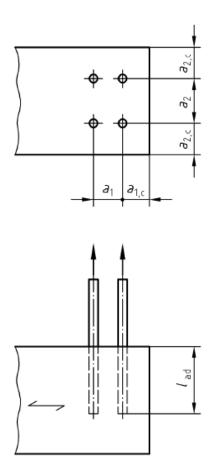
^a Die Angaben der Tabelle dürfen nur angewendet werden, wenn die Eignung des Klebersystems nachgewiesen ist.

Valeur de f_{h,1,k}


Vérification section nette

Vérification de la section nette

$$A_{\text{nette}} = \text{max} (36 d^2)$$


(7) Für parallel zur Faserrichtung eingeklebte zugbeanspruchte Stahlstäbe ist die Zugspannung im Holz am Ende des Stahlstabes nachzuweisen. Als wirksame Querschnittsfläche des Holzes darf dabei pro Stahlstab höchstens eine Fläche von $36 \cdot d^2$ angesetzt werden.

Distance minimale pour une sollicitation // à la fibre

$$a_2 = 5 \cdot d$$
 $a_{2,c} = 2,5 \cdot d$

Distance minimale perpendiculaire à la fibre

$$a_1 = 4 \cdot d$$
 $a_2 = 4 \cdot d$
 $a_{1,c} = 2.5 \cdot d$
 $a_{2,c} = 2.5 \cdot d$

Sollicitation perpendiculaire à l'axe (comme une broche)

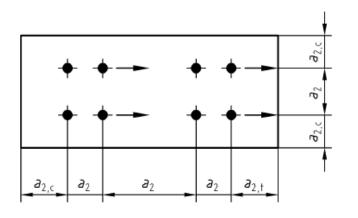


Tabelle 23 — Mindestabstände von rechtwinklig zur Stabachse beanspruchten eingeklebten Stahlstäben

	1	2
1	parallel zur Faserrichtung eingeklebte Stahl- stäbe	$a_2 = 5 \cdot d$ $a_{2,c} = 2,5 \cdot d$ $a_{2,t} = 4 \cdot d$
2	rechtwinklig zur Faserrichtung eingeklebte Stahlstäbe	siehe Tabelle 8

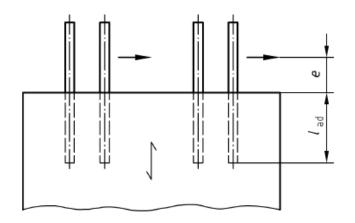


Tableau 8: Distance standard entre broche

- Sollicitation perpendiculaire à l'axe de la tige (comme une broche)
 - Tige encollé perpendiculaire à la fibre
- (4) Bei rechtwinklig zur Faserrichtung eingeklebten Stahlstäben dürfen die charakteristischen Werte der Lochleibungsfestigkeit nach 12.3 mit um 25 % erhöhten Werten in Rechnung gestellt werden.
 - Tige encollé parallèle à la fibre
- (5) Bei parallel zur Faserrichtung eingeklebten Stahlstäben dürfen die charakteristischen Werte der Lochleibungsfestigkeit zu 10 % der entsprechenden Werte wie bei rechtwinklig zur Faserrichtung eingeklebten Stahlstäben angenommen werden.

Sollicitation combinée

(1) Bei gleichzeitiger Beanspruchung von eingeklebten Stahlstäben auf Abscheren und auf Herausziehen ist nachzuweisen:

$$\left(\frac{F_{\ell} \, \mathsf{a}, \mathsf{d}}{R_{\ell} \, \mathsf{a}, \mathsf{d}}\right)^2 + \left(\frac{F_{\mathsf{ax}, \mathsf{d}}}{R_{\mathsf{ax}, \mathsf{d}}}\right)^2 \le 1 \tag{279}$$